Anzeige:
THEMA: Grosse Radien zeichnen
THEMA: Grosse Radien zeichnen
Toetsenman - 28.01.11 11:37
Hallo zusammen,
wie kann ich am einfachsten einen Radius zeichen? Ich meine jetzt nicht kleine Radien, die ich mittels Zirkel erstelle, sondern grosse Radien z.B. 400 cm. Wenn ich ein Kurvenmodul baue und diesen Radius auf die Platte bekommen will, muss dass doch irgendwie gehen.
Ich denke schon mal was mit einer Sehne gesehen zu haben, auf der die Senkrechten darauf dann den Kreisbogen ergaben.
LG - Rainer
wie kann ich am einfachsten einen Radius zeichen? Ich meine jetzt nicht kleine Radien, die ich mittels Zirkel erstelle, sondern grosse Radien z.B. 400 cm. Wenn ich ein Kurvenmodul baue und diesen Radius auf die Platte bekommen will, muss dass doch irgendwie gehen.
Ich denke schon mal was mit einer Sehne gesehen zu haben, auf der die Senkrechten darauf dann den Kreisbogen ergaben.
LG - Rainer
Hallo Rainer,
es geht mittels Schnur, Befestigung des einen Endes am Kreismittelpunkt, am anderen Ende ein Bleistift.
Gruß
Eddie
es geht mittels Schnur, Befestigung des einen Endes am Kreismittelpunkt, am anderen Ende ein Bleistift.
Gruß
Eddie
Toetsenman - 28.01.11 11:49
Hallo Eddie,
nein, ich meine ohne direkte Verwendung des Radius von z.B. 400 cm. Es muss doch irgendwie auch mit beengten Platzverhältnissen gehen...
LG - Rainer
nein, ich meine ohne direkte Verwendung des Radius von z.B. 400 cm. Es muss doch irgendwie auch mit beengten Platzverhältnissen gehen...
LG - Rainer
Hallo,
vielleicht liegt es an meiner Zuneigung zur Mathematik, aber ich habe mir die Kreisgleichung x^2 + y^2 = r^2 (für den Einheitskreis) zunutze gemacht, hab dann quasi für jeden Zentimeter, den ich in Längsrichtung gehe den Wert in cm berechnet, den ich in Querrichtung gehen muss, und mir daraus eine Schablone gebastelt. Übrigens kann man statt der Kreisgleichung auch die Gleichung für eine Klothoide verwenden, um Übergangsbögen darzustellen.
Viele Grüße,
Benni
vielleicht liegt es an meiner Zuneigung zur Mathematik, aber ich habe mir die Kreisgleichung x^2 + y^2 = r^2 (für den Einheitskreis) zunutze gemacht, hab dann quasi für jeden Zentimeter, den ich in Längsrichtung gehe den Wert in cm berechnet, den ich in Querrichtung gehen muss, und mir daraus eine Schablone gebastelt. Übrigens kann man statt der Kreisgleichung auch die Gleichung für eine Klothoide verwenden, um Übergangsbögen darzustellen.
Viele Grüße,
Benni
Ich mach das auch so wie Benni (Nr.3): Den gewünschten Kreisbogen teile ich in Stützpunkte von ca. 100-150mm Abstand auf und berechne dann die x/y-Koordinaten der Stützpunkte. Diese zeichne ich direkt auf dem Brett ein. Zum Schluss verbinde ich die Stützpunkte mit "Schwung aus dem Ellbogen" und gut ist.
Felix
Felix
Hallöchen,
wenn man es erst einmal geschafft hat, einen Kreisabschnitt im gewünschten Radius mit Hilfe der in Antwort 1 erwähnten Schnur irgendwohin zu zeichnen (notfalls in einem beliebigen ausreichend großen Raum, etwa Garage usw.), dann kann man diesen gezeichneten Radius mit einem sogenannten Kurvenlineal auf das endgültige Objekt übertragen.
Kurvenlineal siehe z. B. bei Google: http://www.google.de/search?q=kurvenlineal
Vielleicht hilft das weiter?
Gruß
Horst
wenn man es erst einmal geschafft hat, einen Kreisabschnitt im gewünschten Radius mit Hilfe der in Antwort 1 erwähnten Schnur irgendwohin zu zeichnen (notfalls in einem beliebigen ausreichend großen Raum, etwa Garage usw.), dann kann man diesen gezeichneten Radius mit einem sogenannten Kurvenlineal auf das endgültige Objekt übertragen.
Kurvenlineal siehe z. B. bei Google: http://www.google.de/search?q=kurvenlineal
Vielleicht hilft das weiter?
Gruß
Horst
HaNNoveraNer - 28.01.11 12:29
Huhu
Man könnte es auch mit einem Gleiplanprogramm ausdrucken, auch gut für die Übergangsbögen, und dann eine Einteilung in cm machen, oder von einem Ursprung aus die Koordinaten abmessen. um es auf die Platte zu übertragen.
Oder gleich ausschneiden und drauflegen.
Gruß
Thomas
Man könnte es auch mit einem Gleiplanprogramm ausdrucken, auch gut für die Übergangsbögen, und dann eine Einteilung in cm machen, oder von einem Ursprung aus die Koordinaten abmessen. um es auf die Platte zu übertragen.
Oder gleich ausschneiden und drauflegen.
Gruß
Thomas
Hallo Rainer,
dieses Problem haben nicht nur wir Modellbauer. Wie Benni und Felix schon feststellten, ist mit etwas Mathematik es leicht zu lösen. In dem Link ist es ganz gut erklärt.
www.lehmanns.de/media/9285229
Grüße Walter
dieses Problem haben nicht nur wir Modellbauer. Wie Benni und Felix schon feststellten, ist mit etwas Mathematik es leicht zu lösen. In dem Link ist es ganz gut erklärt.
www.lehmanns.de/media/9285229
Grüße Walter
Hallo
an eine kleine Holzleiste von 10x 10 mm , 450mm lang , auf einer Seite ein kleines Loch bohren und eine Stecknadel ein leimen. bei 400 mm ein Loch bohren ,wo ein Bleistift auf Preß reindrücken.
Und dann los
man kann ja noch beliebig viele Löcher für Andere Radien Bohren.
Gruß Robby
an eine kleine Holzleiste von 10x 10 mm , 450mm lang , auf einer Seite ein kleines Loch bohren und eine Stecknadel ein leimen. bei 400 mm ein Loch bohren ,wo ein Bleistift auf Preß reindrücken.
Und dann los
man kann ja noch beliebig viele Löcher für Andere Radien Bohren.
Gruß Robby
Michael Peters - 28.01.11 22:40
Hallo zusammen,
oder einen abgebrochenen Zollstock nehmen, da ist die cm-Skala schon drauf.
Grüße Michael Peters
Zitat
an eine kleine Holzleiste von 10x 10 mm , 450mm lang , auf einer Seite ein kleines Loch bohren und eine Stecknadel ein leimen. bei 400 mm ein Loch bohren ,wo ein Bleistift auf Preß reindrücken.
Und dann los
man kann ja noch beliebig viele Löcher für Andere Radien Bohren.
oder einen abgebrochenen Zollstock nehmen, da ist die cm-Skala schon drauf.
Grüße Michael Peters
Toetsenman - 29.01.11 08:16
Hallo Walter,
ich glaube das war's (S. 415)! Irgendwo hatte ich nämlich sowas gesehen, aber ich habe trotz Google nichts gefunden. Danke für den Link!
LG - Rainer
ich glaube das war's (S. 415)! Irgendwo hatte ich nämlich sowas gesehen, aber ich habe trotz Google nichts gefunden. Danke für den Link!
LG - Rainer
Nur registrierte und eingeloggte User können Antworten schreiben.
Einloggen ->
Noch nicht registriert? Hier können Sie Ihren kostenlosen Account anlegen: Neuer N-Liste Account
Zum Seitenanfang
© by 1zu160.net;